# Dispersion Modeling Challenges in 2017



NTH Consultants, Ltd.

Infrastructure Engineering and Environmental Services

**AWMA 2017**April 27, 2017



# Presented by

#### **Chris Occhipinti**

Project Engineer cocchipinti@nthconsultants.com 517-702-2952





NTH Consultants, Ltd.



# Agenda

- Introduction to Dispersion Modeling
- Dispersion Modeling for Air Permitting
  - Goals
  - Methodology
  - Case Study
- Challenges and Solutions
- Changes to Federal Rules / Guidelines
  - Current Status
  - Modeled Emission Rates for Precursors





#### **Who Should Care About Modeling?**

- Anybody Involved with an Industrial Source that Emits Pollutants
  - Need to Obtain Air Permits Unless Exempt
- Air Quality Regulators
  - Tasked with Ensuring Clean, Safe Air
  - Issuing Permits
  - Modeling for Attainment Planning
- Environmental Groups
  - Conduct Modeling for Research
  - Verify that Regulations are Being Followed



Transportation Air Quality





#### **Goals of Air Quality Modeling**

- Ensuring the Air is Safe for the General Public
  - Different Scales
    - Short Range
      - Impacts from Individual Projects
      - Combined Impacts from Local Sources
    - Regional
      - Interstate Transport
      - Regional Haze
    - Global
      - Cross Border Transport
      - Climate Modeling







#### **How Permit Modeling Works**

- Main Dispersion Model is AERMOD
  - <u>A</u>MS/<u>E</u>PA <u>Regulatory Model Improvement Committee</u> (AERMIC) <u>Model</u>
    - EPA Default Regulatory Model Since 2005
    - Gaussian Plume Model





#### **How Dispersion Modeling Works**

- What the Model Does
  - Simulates How a Plume is Dispersed From Input Information
- Input Information
  - Physical Layout (Fenceline, Buildings, Roads)
  - Onsite and Offsite Sources
    - Estimation of Emission Rates
    - Source Stack Parameters
  - Nearby Environment
    - Meteorology
    - Terrain/Topography
  - Chemical Reactions





# **How Dispersion Modeling Works**







- Step 1
  - Determine if Modeling Is Necessary
- Step 2
  - Use Tables / Qualitative Analysis if Possible (Michigan Only)
- Step 3
  - Model Project Only Emissions
- Step 4
  - Conduct Refined Modeling:
    - Prevention of Significant Deterioration (PSD) Increments
    - National Ambient Air Quality Standards (NAAQS)



- Determine if Modeling is Needed
  - Review New Emissions / Reductions
  - Compare to
    - Major Source/PSD Thresholds Federal Level Modeling
    - Significant Emission Rate (SER) Criteria Pollutants
    - Allowable Emission Rates (AER) State Toxics



- New Combined Cycle Combustion Turbine Facility
  - 200 Megawatt Capacity
  - 2 Combined Cycle Turbines
  - Ancillary Equipment
    - Engines
    - Auxiliary Boiler
    - Fuel Gas Heater
    - Cooling Towers
- Pollutants of Concern Typically
  - Nitrogen Oxides (NO<sub>x</sub>)
  - Sulfur Dioxide (SO<sub>2</sub>)
  - Fine Particulate Matter (PM<sub>10/2,5</sub>)
  - State Air Toxics







- Determine if Modeling is Needed
  - Federal Standards

| Pollutant            | Emission<br>Rate (tpy) | SER (tpy) | Modeling<br>Required? |
|----------------------|------------------------|-----------|-----------------------|
| NO <sub>x</sub>      | 300                    | 40        | Yes                   |
| SO <sub>2</sub>      | 39                     | 40        | Maybe                 |
| PM <sub>10/2.5</sub> | 100                    | 10 / 15   | Yes                   |
| CO                   | 400                    | 100       | Yes                   |
| VOC                  | 200                    | NA        | NA                    |

- State Air Toxics Allowable Emission Rates (AER)
  - No Modeling Required (Magically)



| Allowable Emissions  | Stack Requirements <sup>1</sup>                                                                       | Demonstration<br>Required <sup>2</sup> |
|----------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------|
| Greater than SER     | As necessary to meet NAAQS and PSD increment                                                          | Y <sup>3</sup>                         |
| 100%-50% of SER      | Minimum height: 60 feet and 1.5 times the building height Orientation: Vertically unobstructed        | N                                      |
|                      | Minimum beight: 30 feet Orientation: Vertically unobstructed Building: No Downwash <sup>4</sup>       | N                                      |
| 25%-50% of SER       | Minimum height: 40 feet and 1.5 times the building height Orientation: Vertically unobstructed        | N                                      |
|                      | Minimum height: 20 feet<br>Orientation: Vertically unobstructed<br>Building: No Downwash <sup>4</sup> | N                                      |
| Less than 25% of SER | None                                                                                                  | N                                      |

| Pollutant       | Emission<br>Rate (tpy) | SER<br>(tpy) | Stack Height Meets<br>AQD-22 Table 1? | Modeling Required? |
|-----------------|------------------------|--------------|---------------------------------------|--------------------|
| SO <sub>2</sub> | 39                     | 40           | Yes                                   | No                 |



- Qualitative Analysis (Michigan)
  - Some Factors to Consider:
    - Current Air Quality Conditions
    - Expected Impact of Permitted Source
    - Previous Modeling Results if Available
    - Meteorology
    - Terrain
    - Distance to Ambient Air
    - Emissions Decreases
    - Associated Release Characteristics
    - Quality of Data
    - Other



























- Other Considerations While Building a Model
  - Meteorology
    - Representative of Site Wind Speeds and Directions
    - Federal Modeling Requires
      - 1 Year of Onsite Data
      - Last 5 Years of Representative Data from NWS/FAA
    - Michigan Toxics
      - Most Recent 1 Year of Representative Data
  - Ozone Background Data for NO<sub>x</sub> to NO<sub>2</sub> Conversion
  - Rural vs. Urban Land Use



- Modeling Project Impacts vs. State Air Toxics Screening Levels
  - Project Emission Unit Emissions Only
  - Model at Maximum Potential to Emit (PTE)



25



- Modeling Project Impacts vs. Significant Impact Levels (SILs)
  - Project Emissions Only
  - Modeled at Maximum Potential to Emit (PTE)
  - Increases and Decreases Allowed
  - SILs are Very Small Compared to NAAQS or PSD Increments



26



Modeling Project Impacts vs. Significant Impact Levels (SILs)

| Pollutant         | Averaging<br>Period* | Modeled Impact<br>(μg/m³) | SIL<br>(µg/m³) | Passing? |
|-------------------|----------------------|---------------------------|----------------|----------|
| $NO_x$            | 1-Hour               | 4.5                       | 7.5            | Yes      |
| PM <sub>2.5</sub> | 24-Hour              | 5                         | 1.2            | No       |
| CO                | 1-Hour               | 15                        | 2,000          | Yes      |

<sup>\*</sup>Only Most Stringent Averaging Period Shown



#### **Methodology for New Projects**

- Facility-Wide Impacts vs. National Ambient Air Quality Standards
  - Project at PTE
  - All On and Offsite Sources
  - Ambient Background from Representative Air Quality Monitors
- Facility-Wide Impacts vs. PSD Increments
  - Project at PTE
  - On and Offsite Increment Consuming Sources at Actual Emission Rates
  - Model Calculations Different from NAAQS and SIL









#### **National Ambient Air Quality Standards**





## **Methodology for New Projects**

Facility-Wide Impacts vs. PSD Increments

| Pollutant         | Averaging<br>Period* | Modeled<br>Impact<br>(µg/m³) | PSD<br>Increment<br>(µg/m³) | Passing? |
|-------------------|----------------------|------------------------------|-----------------------------|----------|
| PM <sub>2.5</sub> | 24-Hour              | 5                            | 9                           | Yes      |

Facility-Wide Impacts vs. National Ambient Air Quality Standards

| Pollutant         | Modeled<br>Impact<br>(μg/m³) | Background<br>(µg/m³) | Total<br>(µg/m³) |    | Passing? |
|-------------------|------------------------------|-----------------------|------------------|----|----------|
| PM <sub>2.5</sub> | 2.7                          | 20.1                  | 22.8             | 35 | Yes      |

31





#### **Challenge 1: High Project Impacts**

- Causes
  - High Emissions
  - Bad Dispersion
  - High Background
- Generally Improved By
  - Reducing Emission Rates
  - Restricting Operation
  - Running Non-Default Options or Alternative Models
  - Increasing Stack Heights
  - Increasing Stack Flow Rate or Temperatures
  - Changing Building Configurations
  - Moving Equipment Locations
    - **Purchasing Property**



#### **Challenge 2: High Impacts from Other Sources**

Can be a Problem with NAAQS and/or PSD Increment Modeling

- Generally Improved By:
  - Modeling Actual Emissions Rather than PTE (New)
  - Running Non-Default Options or Alternative Models
  - Source Contribution Analysis





#### **Timeline of Rules and Guidance**

- 2005 40 CFR Part 51, Appendix W Promulgated in Federal Register
  - Incorporated AERMOD
  - Lots of Guidance Since 2005
- 2016 "Final" Appendix W Updates Promulgated
  - Postponed by Trump EPA
  - Tentative New Effective Date May 22, 2017
  - Applies to All Permits Issued After January 17, 2018 (So Far)
- 2016 Draft Guidance on MERPs
  - Modeled Emission Rates of Precursors
  - Public Comment Period Extended by Trump EPA
  - Still Not Final



## 2016 Appendix W Updates

#### General

- More Flexibility, but More Consultation with EPA
- New Regulatory AERMOD Version 16216r
- We Can Use the New Appendix W Immediately

#### Important

- Revised Acceptable NO<sub>x</sub> to NO<sub>2</sub> Conversion Methods
- New "USTAR" Meteorological Option Allowed
- Must Consider Secondary Formation Due to Precursors



- Ozone (O<sub>3</sub>) Formation
  - · NO<sub>x</sub>
  - VOCs
- Fine Particulate Matter (PM<sub>2.5</sub>) Formation
  - Primary PM<sub>2.5</sub>
  - NO<sub>x</sub>
  - SO<sub>2</sub>
- Options for Precursor Assessment
  - Significant Emission Rates (SER)
  - Modeled Emission Rates of Precursors (MERPs)
  - Other Screening Models (Not Developed Yet)
  - Full Photochemical Modeling



- What are MERPs?
  - EPA Conducted Photochemical Modeling
    - Link Precursor Emissions to Impacts
    - 1,800 Model Runs
    - Varied Heights, Locations, and Emissions
      - Macomb County
      - Montcalm County
      - Marquette County
  - Default MERPs
    - Based on Comparing to SILs
  - Allows Development of Site-Specific MERPs





Back to Case Study

| Emissions (tpy)      | Height        | County | NO <sub>x</sub> (tpy) | VOC (tpy) | SO <sub>2</sub> (tpy) |
|----------------------|---------------|--------|-----------------------|-----------|-----------------------|
| < 500 Each Pollutant | ~ 90m (~300') | Macomb | 300                   | 200       | 41                    |





Case Study – Ozone Formation

| Emissions (tpy)      | Height | County | NO <sub>x</sub> (tpy) | VOC (tpy) |
|----------------------|--------|--------|-----------------------|-----------|
| < 500 Each Pollutant | ~ 90m  | Macomb | 300                   | 200       |

 EPA Default MERPs

 Region
 8-hour O<sub>3</sub>

 NO<sub>x</sub> (tpy)
 VOC (tpy)

 Eastern U.S.
 170
 1,159

Solution (Hopefully): Create Site-Specific MERPs



Case Study – Ozone Formation

| Emissions (tpy)      | Height | County | NO <sub>x</sub> (tpy) | VOC (tpy) |
|----------------------|--------|--------|-----------------------|-----------|
| < 500 Each Pollutant | ~ 90m  | Macomb | 300                   | 200       |

|              | EPA Default MERPs     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|--------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Region       | 8-hour O <sub>3</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|              | NO <sub>x</sub> (tpy) | VOC (tpy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Eastern U.S. | 170                   | 1,159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|              |                       | CONTRACTOR IN CO |  |  |  |

|        | Site Specific MERPs   |           |  |  |
|--------|-----------------------|-----------|--|--|
| County | 8-hour O <sub>3</sub> |           |  |  |
|        | NO <sub>x</sub> (tpy) | VOC (tpy) |  |  |
| Macomb | 532                   | 1,786     |  |  |

Now We Need to Look at Both Pollutants



Case Study – Ozone Formation

| Emissions (tpy)      | Height | County | NO <sub>x</sub> (tpy) | VOC (tpy) |
|----------------------|--------|--------|-----------------------|-----------|
| < 500 Each Pollutant | ~ 90m  | Macomb | 300                   | 200       |

| Site Specific MERPs | 8-hour O<sub>3</sub> | | VOC (tpy) | Macomb | 532 | 1,786 |

**Easier to Show than Explain** 

 $NO_x$  (300/532) + VOC (200/1,768) = 56% + 11% = 68% of Critical AQ Threshold



Case Study – PM<sub>2.5</sub> Formation

| Emissions (tpy)      | Height | County | NO <sub>x</sub> (tpy) | SO <sub>2</sub> (tpy) |
|----------------------|--------|--------|-----------------------|-----------------------|
| < 500 Each Pollutant | ~ 90m  | Macomb | 300                   | 41                    |

|              |                 | EPA Default MERPs      |                          |                       |  |
|--------------|-----------------|------------------------|--------------------------|-----------------------|--|
| Devien       | 24-1            | nour PM <sub>2.5</sub> | Annual PM <sub>2.5</sub> |                       |  |
| Region       | NO <sub>x</sub> | SO (tpy)               | NO <sub>v</sub> (tpy)    | SO <sub>2</sub> (tpy) |  |
| Eastern U.S. | 2,295           | 628                    | 10,144                   | 4,013                 |  |

|        |  | Site Specific MERPs      |                        |           |                       |  |
|--------|--|--------------------------|------------------------|-----------|-----------------------|--|
| County |  | 24-ł                     | nour PM <sub>2.5</sub> | Annual P  | M <sub>2.5</sub>      |  |
|        |  | NO <sub>x</sub><br>(tpy) | SO₂ (tpy)              | NO, (tpy) | SO <sub>2</sub> (tpy) |  |
| Macomb |  | 10,000                   | 2,500                  | 75,000    | 37,500                |  |



Case Study – PM<sub>2.5</sub> Formation

| Emissions (tpy)      | Height | County | NO <sub>x</sub> (tpy) | SO <sub>2</sub> (tpy) |
|----------------------|--------|--------|-----------------------|-----------------------|
| < 500 Each Pollutant | ~ 90m  | Macomb | 300                   | 41                    |

| PELIN ARRESTS TOWNER | Site Specific MERPs |                        |                       |                       |  |
|----------------------|---------------------|------------------------|-----------------------|-----------------------|--|
|                      |                     | Site Speci             | TIC MERPS             |                       |  |
| 0                    | 24-l                | nour PM <sub>2.5</sub> | Annual P              | M <sub>2.5</sub>      |  |
| County               | NO <sub>x</sub>     |                        |                       | SO <sub>2</sub>       |  |
|                      | (tpv)               | SO (tpv)               | NO <sub>x</sub> (tpy) | SO <sub>2</sub> (tpy) |  |
| Macomb (             | 10,000              | 2,500                  | 75,000                | 37,500                |  |

 $NO_x$  (300/10,000) +  $SO_2$  (41/2,500) = 3% + 2% = 5% of Critical AQ Threshold



Case Study – PM<sub>2.5</sub> Formation

| Emissions (tpy)      | Height | County | NO <sub>x</sub> (tpy) | SO <sub>2</sub> (tpy) |
|----------------------|--------|--------|-----------------------|-----------------------|
| < 500 Each Pollutant | ~ 90m  | Macomb | 300                   | 41                    |

From Precursors 3% + 2% = 5% of Critical AQ Threshold (SIL)



Case Study – PM<sub>2.5</sub> Formation

| Emissions (tpy)      | Height | County | NO <sub>x</sub> (tpy) | SO <sub>2</sub> (tpy) |
|----------------------|--------|--------|-----------------------|-----------------------|
| < 500 Each Pollutant | ~ 90m  | Macomb | 300                   | 41                    |

From Precursors 3% + 2% = 5% of Critical AQ Threshold (SIL)

#### But We Need to Include in Modeled SIL Impacts

| 24-hr Primary PM <sub>2.5</sub> Model Impact | 24-hr PM <sub>2.5</sub> SIL |
|----------------------------------------------|-----------------------------|
| (μg/m³)                                      | (μg/m³)                     |
| 5                                            | 1.2                         |

SIL Modeled Impacts 5/1.2 = 417% of Critical AQ Threshold (SIL)



- Case Study PM<sub>2,5</sub> Formation
  - From Precursors 3% + 2% = 5% of Critical AQ Threshold (SIL)
  - Plus Modeled Impacts of 417%
  - Gives a Total of 421% of Critical AQ Threshold (SIL)

- Possible Workarounds:
  - Make "Obvious" Case that Precursors Won't Contribute at 5% of SIL
  - Choose Critical AQ Thresholds Other than the SIL (NAAQS/PSD Increment?)

18





As a nationally recognized engineering firm, NTH has been specializing in geotechnical, environmental, and facilities engineering since 1968.

#### NTH Consultants, Ltd.

Infrastructure Engineering and Environmental Services

(800) 736-6842 www.nthconsultants.com