

Renewable natural gas (RNG) what it means for dairy digesters

Dana Kirk, Ph.D., P.E.

Michigan State University

Biosystems and Agricultural Engineering Department

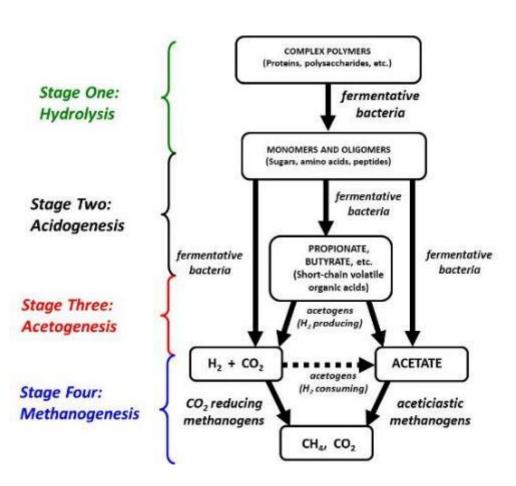
Anaerobic Digestion Research and Education Center

South Campus Anaerobic Digester (SCAD)

Presentation Outline

- Anaerobic digestion process background
- Integration of digesters on dairy farms
- Renewable natural gas
 - Renewable Fuel Standard
 - Low Carbon Fuel Standard
- Current opportunity & considerations
- Milk and digesters

Anaerobic Digestion Process



Process

- Naturally occurring microorganisms
- Temperature:
 - Psychrophilic >68°F
 - Mesophilic 95 to 105°F
 - Thermophilic 125 to 140°F
- Oxygen: limited/none
- Time: 4 − 40 days

Products

- Biogas (methane)
 - 60-70% methane
- Stabilized fertilizer

Impacts of Digestion on Manure

Benefits

- Biogas production
- Odor / emission reduction
- Volatile solids (chemical oxygen demand) reduction (stabilization)
- Nutrient conversion: 25+% increase in inorganic nutrients
- Pathogen reduction
- Weed seed inactivation
- Downstream processing benefit: thermal and chemical uniformity

Myths

- Volume reduction: <10% in slurry systems
- Nutrient destruction: \approx 100% of nutrients retained (CH₄ & CO₂)

Anaerobic Digester Technologies for Manure

Common

- Covered storage (lagoon)
- Plug flow
- Mixed plug flow
- Complete mix

Innovative

- Fixed film
- Sequencing batch reactor
- Induced-blanket
- Two-stage (two-phase)
- High solid / dry fermentation

Municipal complete mix

Technology Comparison

Characteristics	Covered lagoon	Plug flow	Mixed plug flow	Complete mix	Fixed film	Induced blanket	Two-stage	High solids
Vessel material	In-ground clay & synthetic	In-ground tank	In/Above ground tank	In/Above ground tank	Above ground tank	Above ground tank	Above ground tank	Above ground vault
Technology level	Low	Low	Medium	Medium	Medium	High	High	Medium
Heating	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
TS range (%)	3-6	11-13	3-15	3-15	<1	<4	5	>20
Loading rate (<u>kg VS/m³/d)</u>	<0.20	1-6	1-6	1-10	5-10	5-10	2.4	?
Retention time (days)	60+	15+	15+	15+	<4	<5	10-13	>28

Anaerobic Digestion and Dairy Manure

Easy material to make biogas from

Considerations:

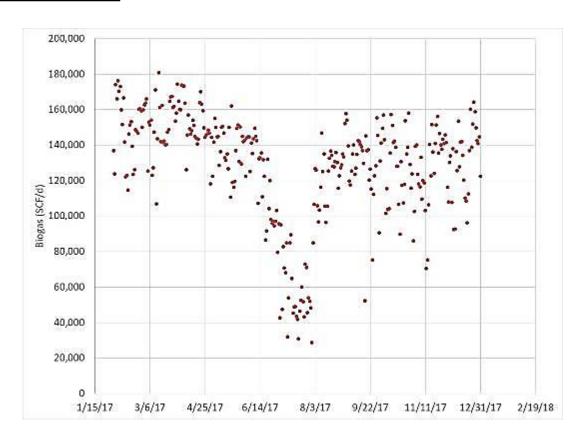
- Farm type
- Manure collection, treatment, & storage
- Bedding
- Manure age
- Additives and animal health
- Contaminants

Manure Characteristics Vary

Housing	Bedding	Collection Frequency/Type	TS (%)	VS (%)	FS (%)	VS:TS (%)
Freestall	Sand	As excreted	15.0	12.8	2.6	85.3
		Daily scrape	23.7	7.3	16.4	30.8
		Sand separator effluent	5.4	3.2	4.5	59.4
Dry lot	Dried manure solids	As excreted	14.3	11.5	2.8	80.7
		Daily scrape	21.9	15.1	6.7	69.3
		Weekly scrape	58.8	22.6	36.2	39.1

Source: http://northeast.manuremanagement.cornell.edu/Pages/General_Docs/Events/3.Dana.Kirk.pdf

Dairy Farm Types & Manure "Age" – Biogas

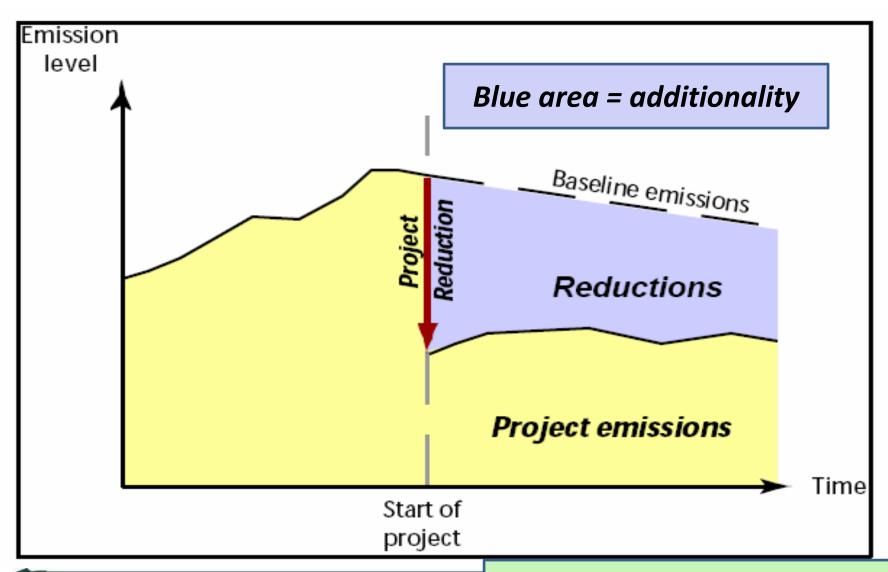


Housing	Bedding	Collection	Biogas Potential		
		Frequency/Type	Ave. (ft3 of biogas/lb of VS%)		
Freestall	Sand	Sand separator effluent	6.4		
Dry lot	Dried manure solids	As excreted	8.8		
		Daily scrape	8.2		
		Weekly scrape	5.4		

Anaerobic Digestion and Dairy Manure

- Manure age
- Additives and animal health
- Contaminants

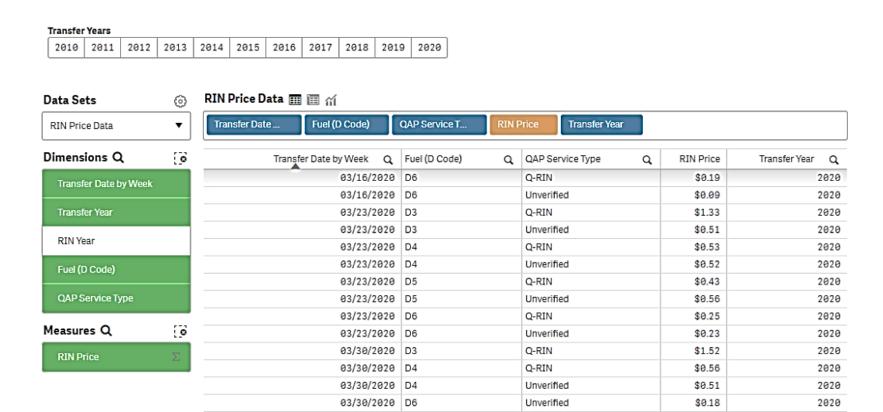
Anaerobic Digestion Revenue Sources

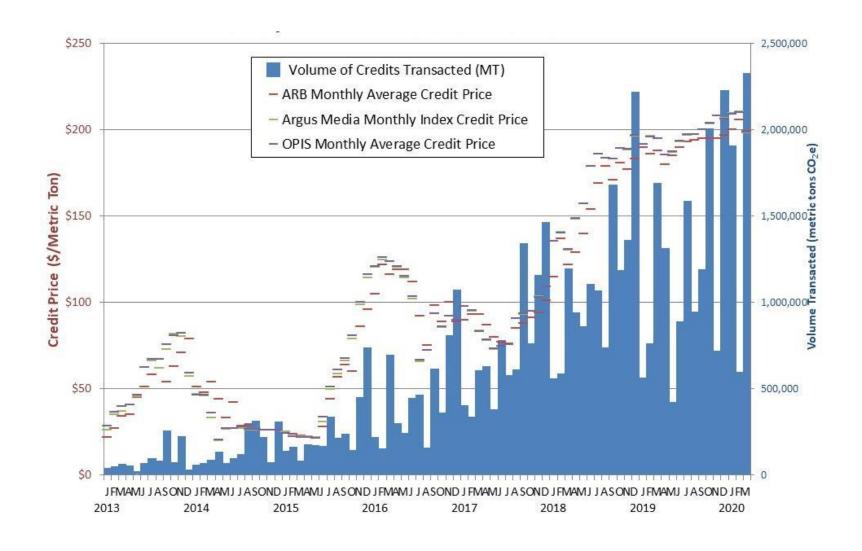

Renewable Natural Gas (RNG)

- Commodity natural gas
- Renewable Fuel Standard Renewable Identification Number
- Low Carbon Fuel Standard Credit

Market Driver – Baseline & Additionality

Fernandez, et al. 2005. Greenhouse gas mitigation planning: A guide for small municipal utilities. (http://www.bren.ucsb.edu/research/gp_past.asp).


RFS - D3 cellulosic feedstock (approved)


- Landfill gas
- Biogas from
 - WWTP "activated sludge and biosolids which are aerobically treated residuals from the processing of municipal wastewater solids" (22% cellulose, 36% hemicellulose, 21% lignin)
 - Anaerobic digesters that process predominantly cellulosic materials, including animal manure, crop residues, and/or separated yard waste
- Other feedstocks which do not meet the 75% cellulosic threshold can generate a D5 RIN

RFS - RIN Pricing, March 2020

Carbon Intensity (CI) Score

- Qualifiers
 - Storage depth (>1 m) and duration (> 1 month)
- Baseline modifiers
 - Ambient temperature
 - Cleanout frequency & timing
 - Treatment that reduces solids to lagoon
- Biogas control system modifiers
 - Biogas production & methane content
 - Treatment that reduces solids to lagoon
 - Lagoon covers
 - Process energy consumption

LCFS Gasoline-equivalent Value

Manure Management	CI Score	Credit Price (\$/mton)	Gasoline Equiv. (\$/gal)
Limited starage or extensive congretion	-50	\$200	\$3.32
Limited storage or extensive separation	-100	\$200	\$4.48
Cond 2 called compression	-150	\$200	\$5.63
Sand & solid separation	-200	\$200	\$6.79
	-250	\$200	\$7.95
Scrape to lagoon, no solids loss	-300	\$200	\$9.11

When Evaluating Partners Consider

- Understand qualification & experience of the team
 - History with dairy projects
 - Engineering understanding of dairy farm operations
 - Fund strength & project timing track record
- Partner Investment strategy
 - Farm value proposition; lump sum, net revenue, gross revenue...
 - Long-term partner or build and exit
 - Impact on your equity/value
- Project complexity
 - Manure processing/treatment
 - Manure/biogas transport

- Easy material to make biogas from!
- Great opportunity for MI dairy industry
- Impact on your dairy operation will not be insignificant
- Maximize your value proposition
- Seek guidance legal, financial & technical
- Need to address some State specific challenges (EGLE, MPSC)

