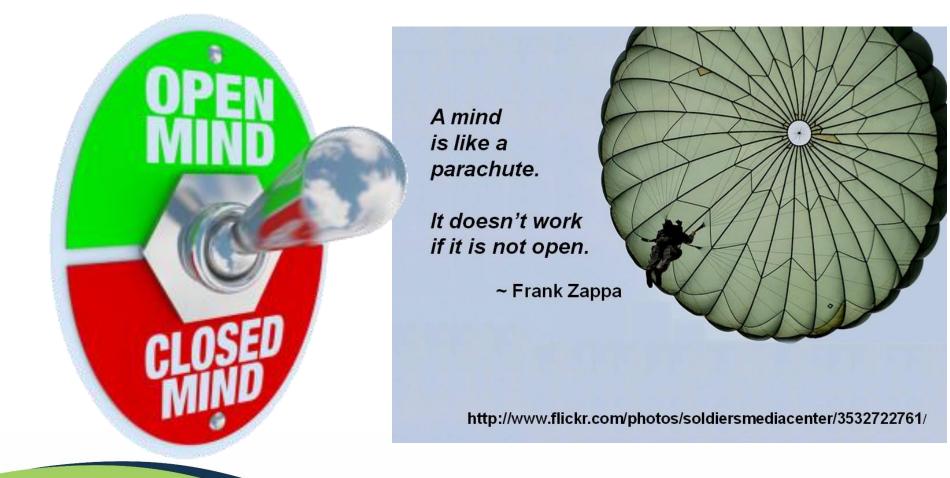


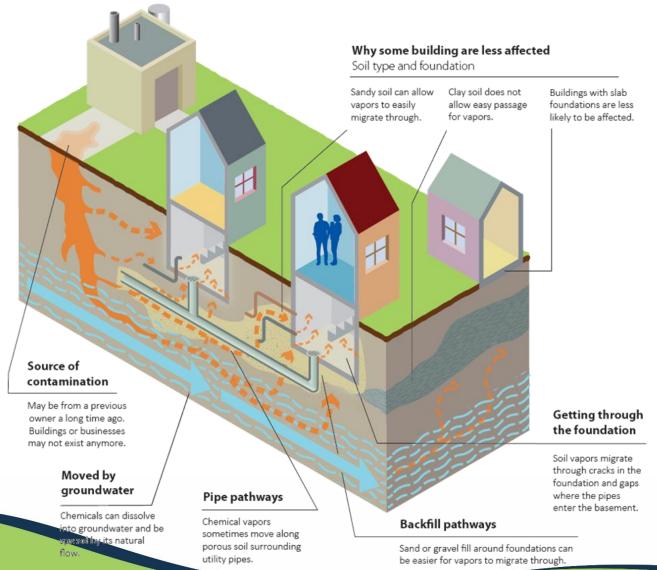
East and West Michigan Chapters of the AWMA and Environmental Law Section of the State Bar of Michigan

Fall Joint Conference

David Harn, Environmental Quality Specialist


Remediation and Redevelopment Division

Matthew Williams, Vapor Intrusion Specialist


Remediation and Redevelopment Division

Volatilization to the Indoor Air Pathway A <u>new</u> Paradigm!

Complex Pathway

DE

*MPCA, 2016

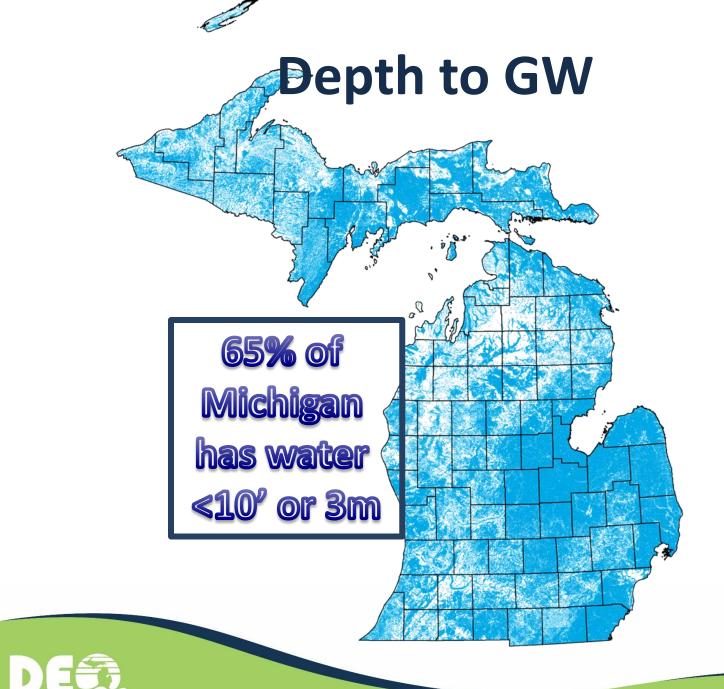
Key Terms and Acronyms

- VIAP Volatilization to the Indoor Air Pathway
- VIAC Volatilization to the Indoor Air Criteria
- VI Vapor Intrusion
- CVI Chlorinated Vapor Intrusion
- **PVI** Petroleum Vapor Intrusion
- Vapor Source Means a hazardous substance in an environmental medium that may form vapors that have the potential to migrate.

Current Volatilization to Indoor Air Inhalation Criteria

 Groundwater Volatilization to Indoor Air Inhalation Criteria (GVIIC)

- R 299.14


• Soil Volatilization to Indoor Air Inhalation Criteria (SVIIC)

- R 299.24

When GVIIC Do Not Apply By Rule

- If <u>any</u> of the following conditions exist, the generic criteria <u>shall not apply</u> and a site specific evaluation shall be conducted:
 - There is a structure which *does not have a* concrete block or poured concrete floor and walls (future considerations as well)
 - The highest water table elevation, considering seasonal variation, *is within three meters of the ground surface*
 - There is a *sump present* or other direct entry of contaminated groundwater into the basement
 **Emphasis added*

*Data from MSU Extension 2015, based on Public Act 148 of 2003

When SVIIC Do Not Apply By Rule

- If <u>any</u> of the following conditions exist, the generic criteria <u>shall not apply</u> and a site specific evaluation shall be conducted:
 - There is a structure which *does not have a* concrete block or poured concrete floor and walls (future considerations as well)
 - There is a *sump present* that is not completely isolated from the surrounding soil

*Emphasis added

Other Considerations

- Also GVIIC and SVIIC do not apply when
 - May not be used for residual or free-phase light nonaqueous phase liquids (LNAPL and DNAPL)
 - Heterogeneous geologic materials and soil type
 - Large water table fluctuations
 - Other
- Often misapplied or used incorrectly
- Just meeting GVIIC and SVIIC may not be protective
- GVIIC and SVIIC are a poor predictors of an unacceptable risk

Current Application of GVIIC/SVIIC

Current Criteria Summary

- GVIIC and SVIIC are the current criteria
 - Can use when they apply
- Current GVIIC and SVIIC (or the VIAC) often do not apply
 - Shallow groundwater (<3 meters)
 - May not apply to NAPL
 - Sumps
 - More

Current Criteria Summary (cont.)

- <u>No generic</u> soil gas or vapor criteria
- Sites have observed that meeting GVIIC and SVIIC may not be protective of the indoor air
- GVIIC and SVIIC are a poor predictor of vapor migration

What is Site-Specific Criteria?

- Satisfy the requirements of section 20120b (and other applicable requirements)
- Need to better reflect the best available information concerning the toxicity or exposure risk posed by the hazardous substance or other factors
- Party proposing the action submits for DEQ review and approval
- Only way to get a vapor number

Site-Specific Criteria

- DEQ has assisted with over 273 site-specific requests since 5/18 when the generic criteria have not applied
- Submitted and reviewed alternate models
 - API's BioVapor Indoor Vapor Intrusion Model
 - AERMOD
 - Others

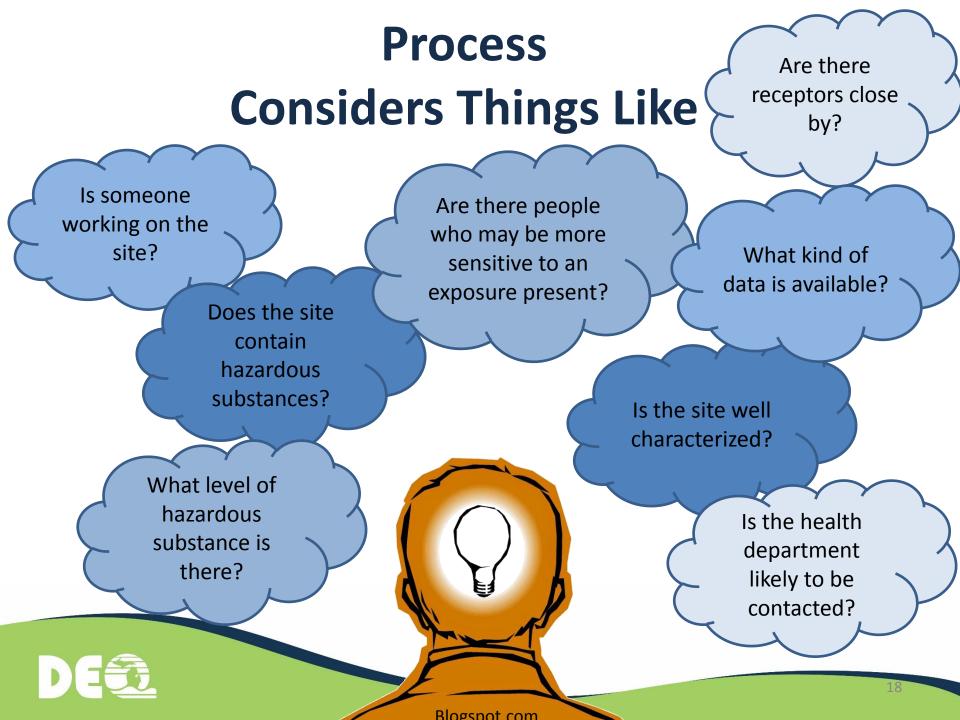
VIAP Site Screening Values A Site-specific Approach

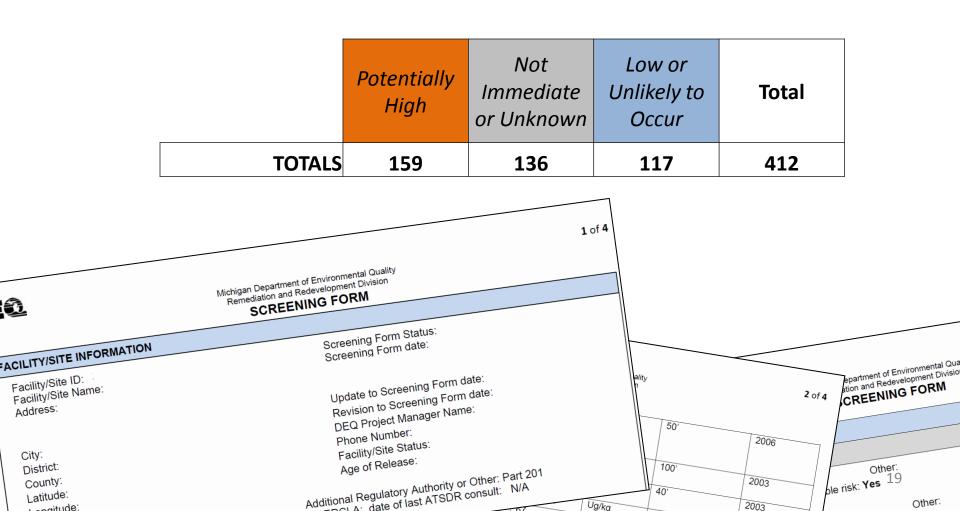
- Aligns with the methodology identified in the proposed rules as the best available science
 - Shallow groundwater, soil, and vapor
 - Initially developed for only 29 hazardous substances
 - Need limited site information
 - Considered protective for all uses
 - DEQ providing assistance using this methodology

VIAP Screening Values

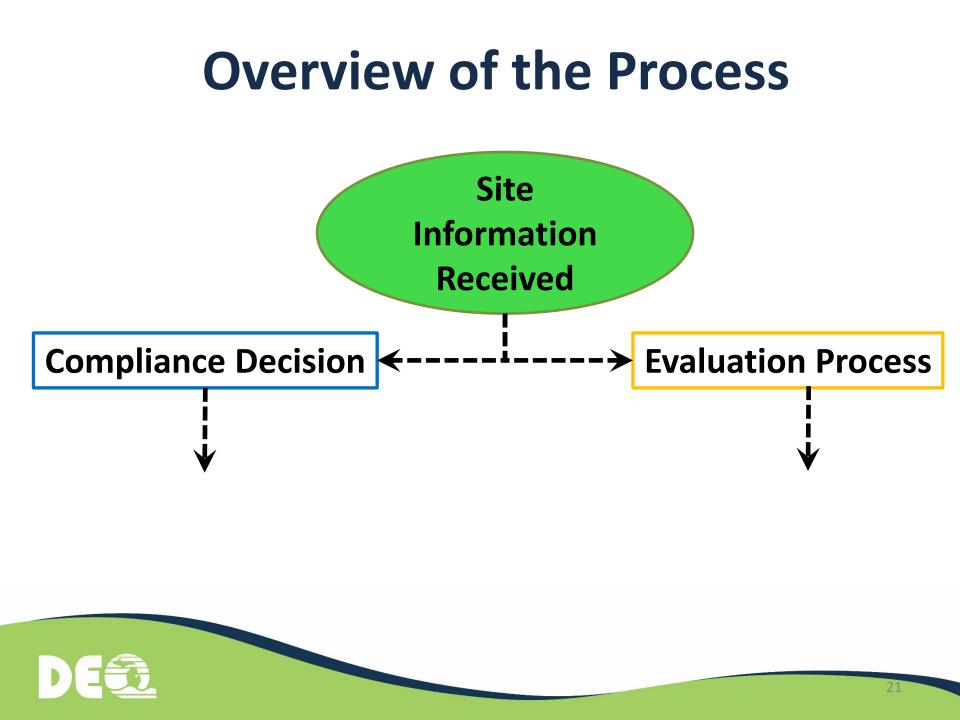
Hazardous Substance	Groundwater µg/L	Soil µg/kg	Vapor μg/m³
Acatana	50,000 (SE);	2.6E+05	1.0E+06
Acetone	st	st	st
Ammonia	1,900 (SE);	NIA	17,000
Ammonia	st	NA	nc
Benzene	1.0	50 (M);1.7	110
	Acetone Ammonia	Hazardous Substanceμg/LAcetone50,000 (SE); stAmmonia1,900 (SE); stL1,900 (SE); st	Hazardous Substance μg/L μg/kg Acetone 50,000 (SE); st 2.6E+05 st Ammonia 1,900 (SE); st NA 1.0 50 (M):1.7

DEQ's Use of the Initial VIAP Site Screening Values


- State-funded site evaluations
- Brownfield program evaluations
- Evaluation of submitted reports
 - Establishes screening values when the generic criteria are not applicable
 - Not used to deny submittals if generic assumptions are applicable
 - Allows for the use of vapor data
 - If met, no further evaluation is necessary
 - If not met, state can provide site-specific criteria if requested, or party can develop their own site-specific criteria to determine if additional actions are needed


Evaluation Database

- Database supports:
 - Prioritizes potential VIAP sites
 - Prioritizes sites for notification to DHHS
 - Document resource needs
 - Document sites evaluated
- Includes sites that have undergone:
 - Site evaluation process
 - Site awareness DHHS
 - Site referral to DHHS



Evaluation Data Base Based on Data Through 11/6/2017

Screening Values and Criteria

DEQ and DHHS

Working Together, Working Cooperatively

- Similarities
 - Departments for the State of Michigan
 - Both are charged with protecting human health
- Differences
 - How we evaluate risk to human health
 - Long term potential risk vs current exposure
 - DEQ also addresses risk to the environment

Interim Action Screening Levels "Evaluation Process"

- Collaboratively developed by DHHS and DEQ
- Used by DEQ, DHHS, and local health departments
- Media Specific:
 - Indoor Air,
 - Soil,

Vapor

Groundwater, and

Department of Environmental Quality

Michigan Department oF Health & Human Services

MICHIGAN ASSOCIATION FOR LOCAL PUBLIC HEALTH

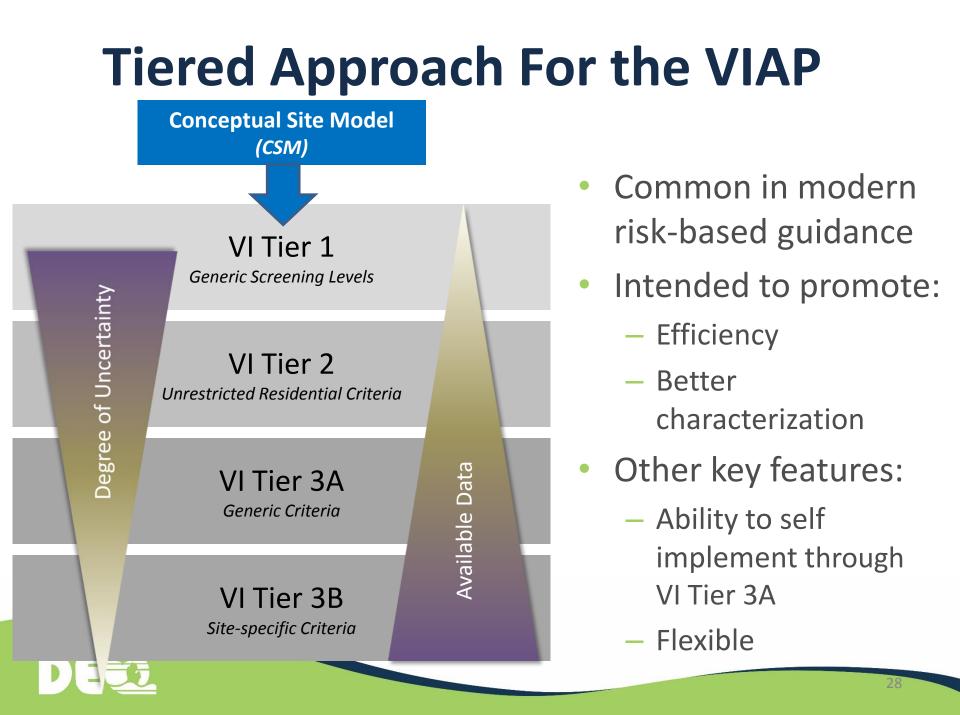
Interim Action Screening Levels

Media-Spacific
Media-Specific Volatilization to Indoor Air Interim Action Screening Levels August 2017 NDOOR AIR SOIL VAPOR (INCLUDING SUBSLAD) August 2017 SOIL VAPOR (INCLUDING SUBSLAD) MOOR AIR SOIL VAPOR (INCLUDING SUBSLAD) August 2017 SOIL VAPOR (INCLUDING SUBSLAD) MOOR AIR SOIL VAPOR (INCLUDING SUBSLAD) MOOR AIR SOIL VAPOR (INCLUDING SUBSLAD) August 2017 SOIL VAPOR (INCLUDING SUBSLAD) MOOR AIR SOIL VAPOR (INCLUDING SUBSLAD) MOOR AIR August 2017 August 2017 August 2017 August 2017 August 2017
7503 Chloroethane 52 160 77 150 430 2200 43,000 40,000 67663 Chloroethane 4,200 13,000 61,00 12,000 36,000 1,000 5,200 2,600 51,100 12,000 74873 Chloroethane 1,1 11 2,6 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 1,10 1,10 1,500
$\frac{146 \times 10^{-10}}{160 \times 10^{-10}} \frac{130}{100} \frac{124}{140} \frac{13000}{19000} \frac{19000}{6.32 \times 105} \frac{125000}{6.32 \times 105} \frac{125000}{15000} \frac{125000}{15000} \frac{15000}{15000} \frac{15000}{15000} \frac{15000}{15000} \frac{12000}{15000} \frac{12000}{1500} \frac{12000}{1500$
Page 3 of 4 Page 4 of 4

Interim Action Screening Levels

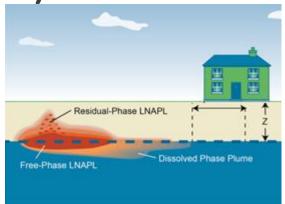
- Identifies indoor air concentrations for 29 hazardous substances
- Intended to assist with risk evaluation by:
 - Determining if potentially unsafe levels of contaminants are present in the indoor air
 - Determining whether interim action to reduce potential exposure is needed
 - If interim action is needed, assist in determining how quickly those actions should be completed

Interim Action Screening Levels


- More information check out the Listserv note dated August 07, 2017
 - Release of Michigan Department of Environmental Quality (DEQ) Volatilization to Indoor Air Interim Action Screening Levels

Use of the Interim Action Screening Levels

- DEQ:
 - Evaluation of sites for discussion and notification to DHHS
 - Interim response decisions
 - Emergency action decisions
- DHHS and Local Health Departments:
 - Evacuation decisions
 - Initial evaluation of whether people can stay in buildings until mitigation is completed
 - Initial evaluation of short/long term health considerations; education



Lateral Inclusion Zone

Petroleum Vapor Intrusion

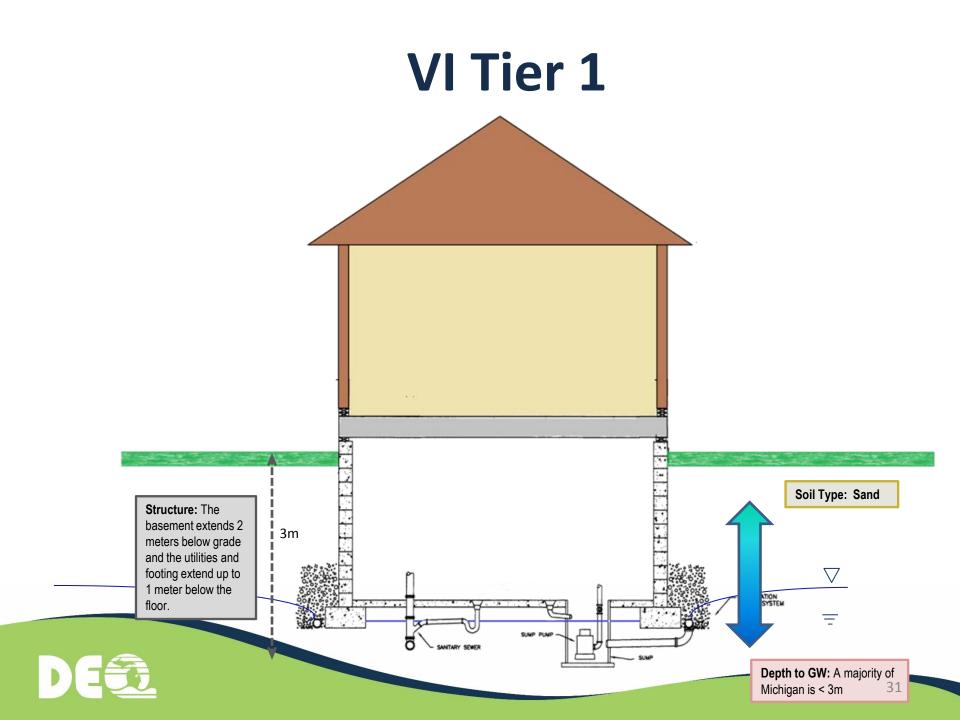
(PVI) - 30'

Chlorinated Vapor Intrusion (CVI) – 100'

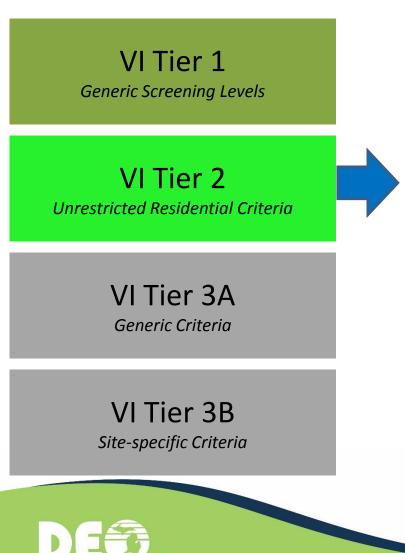
 The horizontal distance beyond a vapor source that may make a property or structure vulnerable to the migration of vapors

1st Step in the VI Tiered Approach

VI Tier 1 Generic Screening Levels


VI Tier 2 Unrestricted Residential Criteria

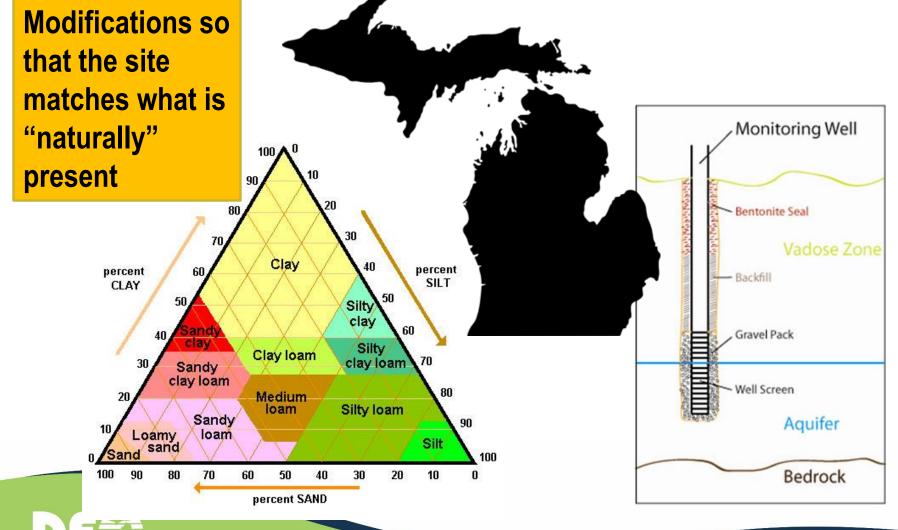
> VI Tier 3A Generic Criteria


VI Tier 3B Site-specific Criteria

- Applicable to all sites with limited data and information
- If your samples meet the <u>screening levels</u>, you are done
- If concentrations exceed:
 - Go to VI Tier 2 or VI Tier 3A
 - Implement a response action and/or restriction(s)
 - "Site-specific" or VI Tier 3B

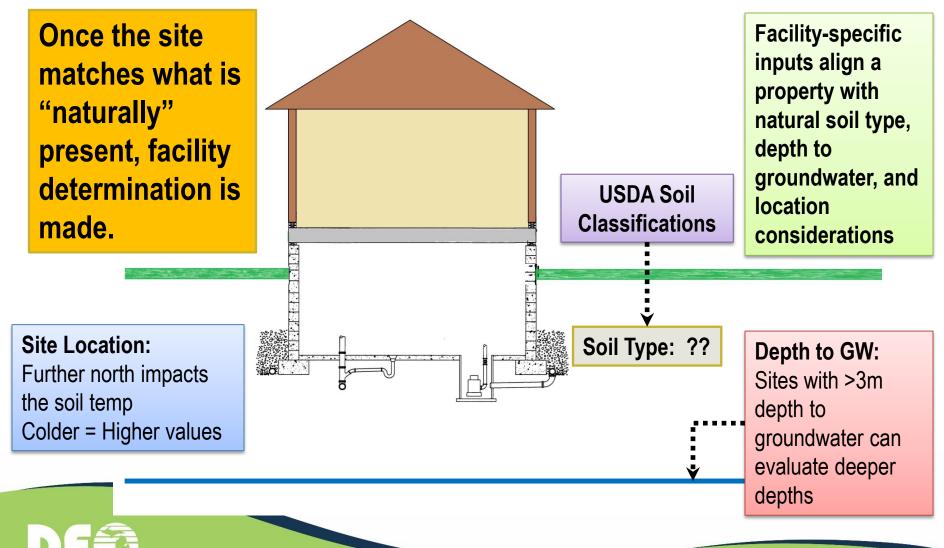
*NOT FACILITY STATUS – However, a person may use the screening level as the criterion to evaluate the pathway when limited or no information is available

VI Tier 2 – Facility-specific Information



- Exceed the VI Tier 1
- Want to apply facilityspecific inputs (including location)

AND


- The soil type is different
 OR
- The depth to groundwater is greater than 3m

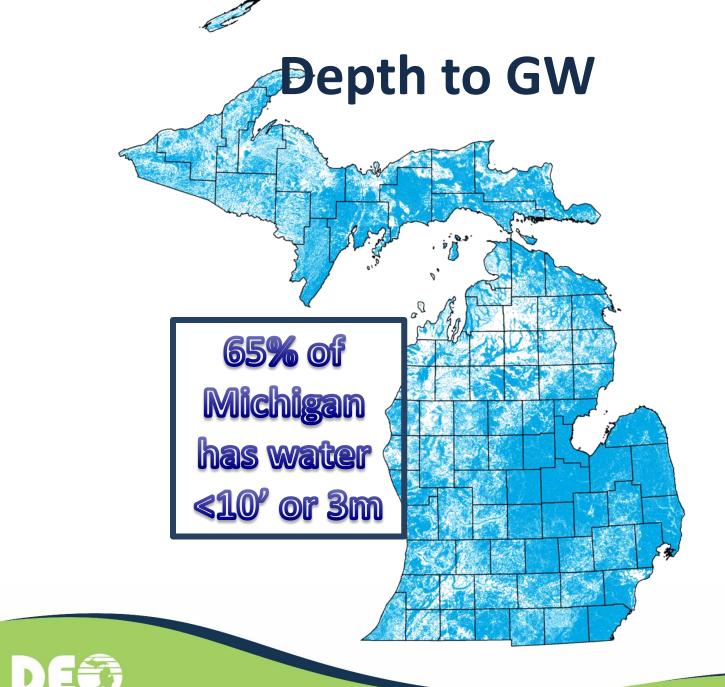
What is Facility-specific Information for VI Tier 2?

VI Tier 2

Unrestricted Residential Criteria

County Specific Temperature

Facility Specific Temperatures by County (degrees Celsius)									
County	Temp	County	Temp	County	Temp	County	Temp		
ALCONA	9	DICKINSON	9	LAKE	11.5	OCEANA	12		
ALGER	8.5	EATON	12	LAPEER	11	CEMAW	9.5		
ALLEGAN	11.5	EMMET	9.5	LEELANAU	11	ONTONAGON	8		
ALPENA	9	GENESEE	10.5	LENAWEE	11.5	OSCEO	11		
ANTRIM	10	GLADWIN	10	LIVINGSTON	11	OS X	9.5		
ARENAC	9.5	GOGEBIC	8	LUCE	1		9.5		
BARAGA	8.5	GRAND TRAVERSE	11	MACKINAC			-11-0	McMillan // NewDerry	
BARRY	12	GRATIOT	11	МАСОМВ	11				
BAY	10	HILLSDALE	12.5	MANISTEE	11.5	ROSCOM	Escanaba		
BENZIE	11	HOUGHTON	8	MARQUETTE	8.5	SAGINAW 🏹	10.5		
BERRIEN	13	HURON	11	MASON	12	SANILAC 🤶	11	Haws	
BRANCH	12.5	INGHAM	11.5	MECOSTA	11	SCHOOLCRAFT	8.5	Eastport	
CALHOUN	13	IONIA	11	MENOMINEE	9.5	SHIAWASSEE	11	Traverse City	
CASS	12.5	Iosco	9.5	MIDLAND	10.5	ST. CLAIR	11		
CHARLEVOIX	9.5	IRON	8.5	MISSAUKEE	10	ST. JOSEPH	12	Bear Lake	
CHEBOYGAN	9	ISABELLA	10.5	MONROE	11	TUSCOLA	10		
CHIPPEWA	8.5	JACKSON	12.5	MONTCALM	11	VAN BUREN	12	Hart Fairgrove	
CLARE	10.5	KALAMAZOO	12	MONTMORENCY	9	WASHTENAW	11.5	Fremont Lakeview Ithaca	
CLINTON	11	KALKASKA	10	MUSKEGON	12	WAYNE	11	Sparia	
CRAWFORD	9.5	KENT	11	NEWAYGO	12	WEXFORD	11		
DELTA	9	KEWEENAW	8	OAKLAND	11			East Lansing	

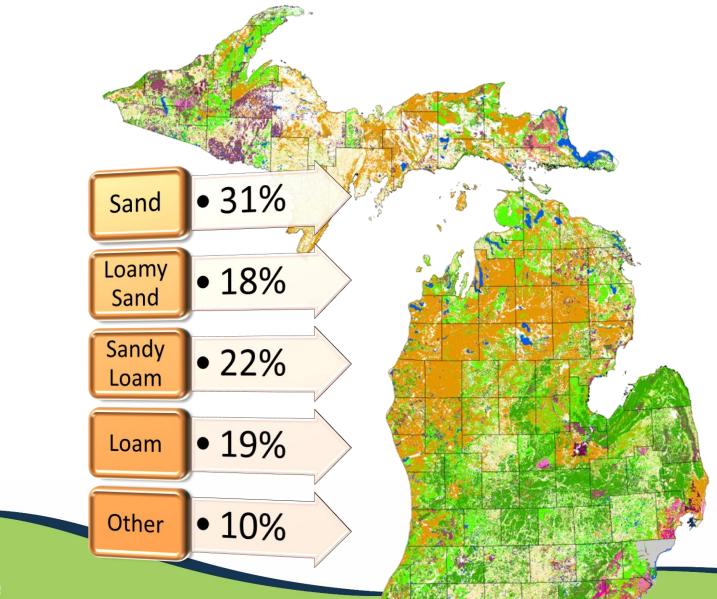

 Table 3

 Facility Specific Temperatures by County (degrees Celsius)

Duidee

Benton Harbo

*Data from MSU Extension 2015, based on Public Act 148 of 2003


Depth to Groundwater

Single Parameter Sensitivity Analysis

Hazardous Substance	Benzene	Tetrachloroethylene	Trichloroethylene
CAS #	71432	127184	79016
Depth to GW	μg/L	μg/L	μg/L
<3m	1	1.5	0.073
Just >3.0m	14	96	6.1
5m	18	130	7.8
10m	27	200	12

Deeper the groundwater is, the more a hazardous substance is likely to diffuse before entering a structure

USDA Soil Classifications

Soil-type Identifies the Parameters

TABLE 1.

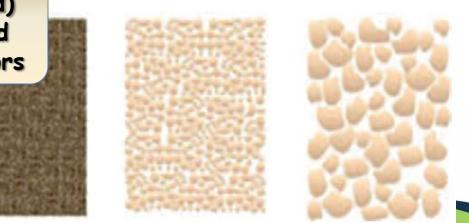
Generic Input Values for United States Department of Agriculture (USDA) Soil Conservation Service Soil Textural Classifications

Soil Texture (USDA)	Soil Texture Abbreviation (USDA)	Soil Total Porosity ^{A.B} n (cm ³ /cm ³)	Saturated Water Content ^{A,c} θ _s (cm ³ /cm ³)	Residual Water Content ^{A,B} θ _r (cm ³ /cm ³)	Soil Water- Filled Porosity ^A θ_w (cm ³ /cm ³)	Soil Air- Filled Porosity ^{A,D} θ _a (cm ³ /cm ³)	van Genuchten parameters ^{A,B}		Mean Particle Diameter ^{A.E} (cm)	Dry Bulk Density ^{A.E} P ^b (g/cm ³)	Saturated Hydraulic Conductivity ^A K _s (cm/h)	
				_			α ₁ (1/cm)	N	М			
Clay	С	0.459	0.459	0.098	0.215	0.244	0.01496	1.253	0.2019	0.0092	1.43	0.61
Clay loam	CL	0.442	0.442	0.079	0.168	0.274	0.01581	1.416	0.2938	0.016	1.48	0.34
Loam	L	0.399	0.399	0.061	0.148	0.251	0.01112	1.472	0.3207	0.02	1.59	0.5
Loamy sand	LS	0.39	0.39	0.049	0.076	0.314	0.03475	1.746	0.4273	0.04	1.62	4.38
Silt	SI	0.489	0.489	0.05	0.167	0.322	0.00658	1.679	0.4044	0.0046	1.35	1.82
Silty loam	SIL	0.439	0.439	0.065	0.18	0.259	0.00506	1.663	0.3987	0.011	1.49	0.76
Silty clay	SIC	0.481	0.481	0.111	0.216	0.265	0.01622	1.321	0.243	0.0039	1.38	0.4
Silty clay loam	SICL	0.482	0.482	0.09	0.198	0.284	0.00839	1.521	0.3425	0.0056	1.63	0.46
Sand	S	0.375	0.375	0.053	0.054	0.321	0.03524	3.177	0.6852	0.044	1.66	26.78
Sandy clay	SC	0.385	0.385	0.117	0.197	0.188	0.03342	1.208	0.1722	0.025	1.63	0.47
Sandy clay Ioam	SCL	0.384	0.384	0.063	0.146	0.238	0.02109	1.33	0.2481	0.029	1.63	0.55
Sandy loam	SL	0.387	0.387	0.039	0.103	0.284	0.02667	1.449	0.3099	0.03	1.62	1.6

A - From User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings. United States Environmental Protection Agency, Office of Emergency and Remedial Response. February 22, 2004.

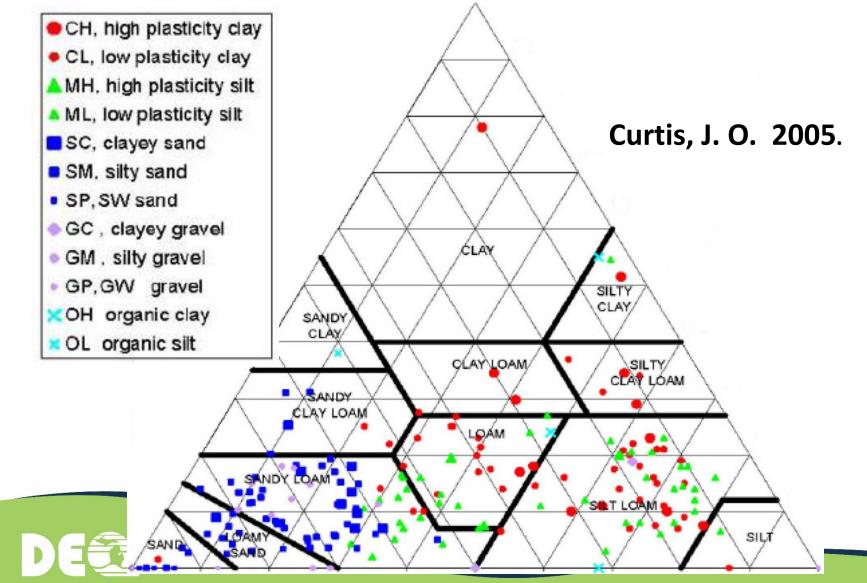
B - Hers, I. June 3, 2002 Technical Memorandum to Debbie Newberry, United States Environmental Protection Agency, Office of Solid Waste. Input Parameters for Office of Solid Waste and Emergency Response Wide Guidance for Vapor Intrusion Pathway.

C - Saturated water content is assumed to be equal to the water soil total porosity because the saturated water between drainage and wetting conditions varies but is always less than the fully saturated water content which is equal to the soil total porosity.


D - The air-filled porosity is calculated as the total porosity minus soil water-filled porosity.

E - Nielson, K. K., and V. C. Rogers. 1990. Radon transport properties of soil classes for estimating indoor radon entry. In: F. T. Cross (ed), Proceedings of the 29th Hanford Symposium of Health and the Environment. Indoor Radon and Lung Cancer: Reality or Myth? Part 1. Battelle Press, Richland, Washington.

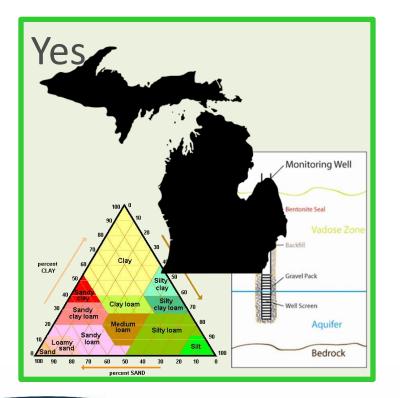
Soil Type

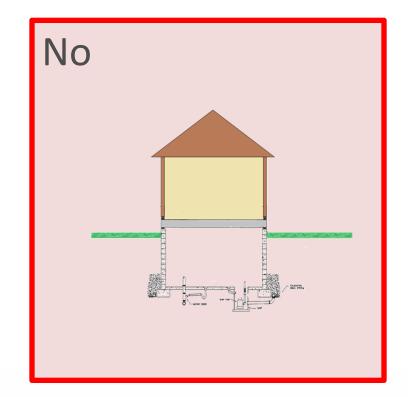

Single Parameter Sensitivity Analysis

Hazardous Substance	Benzene	Tetrachloroethylene	Trichloroethylene	
CAS #	71432	127184	79016	
UNITS	µg/kg	µg/kg	μg/kg	
Sand	1.7	6.2	0.33	
Loamy Sand	11	41	2.3	
Sandy Loam	33	120	7.0	
Loam	120	450	27	

Larger particles (e.g., sand) means more pore space and easier migration of soil vapors

USDA vs USCS Comparison Study


Use of Available Soil Information


- Though historic soil type information typically cannot be used; it can be very helpful
 - Provides a guide on the variation of soil types that can be expected
 - Complete an analysis of whether the collection of the USDA soil type matters prior to entering the field
 - Aid in guiding where to collect soil type information

VI Tier 2 in Review

Inrestricted Residential Generic Criteria

VI Tier 3A

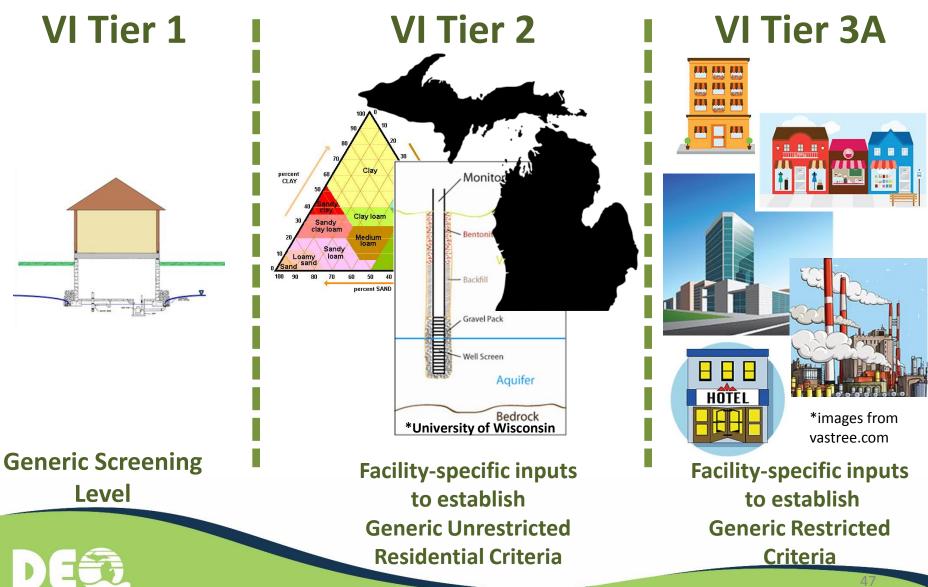
- Residential/Nonresidential
- Exceed VI Tier 1 or VI Tier 2
 AND
- Structure is not a residential house with a basement
 - Different foundation
 - Slab-on-grade
 - Uninhabitable basement
 - Different building
 - High-rise apartment (residential)
 - Former residential, now nonresidential
 - <50,000 square feet</p>
 - >50,000 square feet
 - Both
 - Ability to self implement

VI Tier 2 Unrestricted Residential Criteria

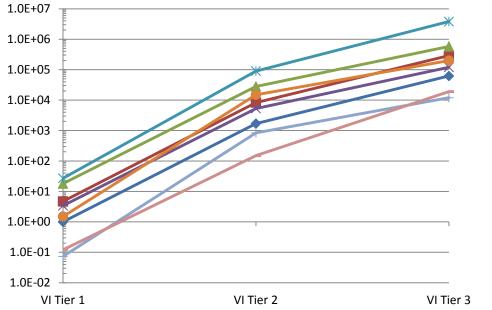
> VI Tier 3A Generic Criteria

VI Tier 3B Site-specific Criteria

VI Tier 3A

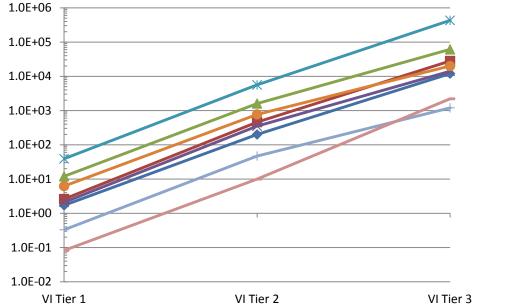


Changes in VI Tier 3A



VI Tiered Process

Values that Align with Site Conditions Groundwater

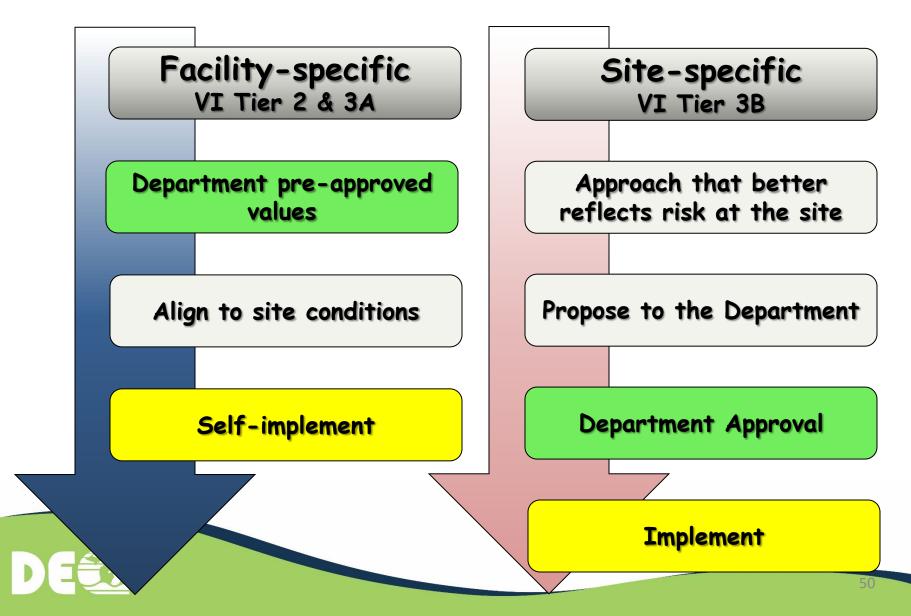

- ---Benzene

- \rightarrow cis-1,2-Dichloroethylene
- ---- Tetrachloroethylene
- ---- Trichloroethylene
- —Vinyl chloride

Units:	μg/l
--------	------

VI HELS						
	Groundwater					
	Fac	ility	Response Action			
Benzene	1	1,700	1	62,000		
1,1-Dichloroethane	4.7	8,300	4.7	290,000		
1,1-Dichloroethylene	18	28,000	18	580,000		
cis-1,2-Dichloroethylene	3.4	5,300	3.4	120,000		
trans-1,2-Dichloroethylene	27	90,000	27	3.80E+06		
Tetrachloroethylene	1.5	15,000	1.5	200,000		
Trichloroethylene	0.073	840	0.73	12,000		
Vinyl chloride	0.12	150	0.12	19,000		

Values that Align with Site Conditions Soil


- ---Benzene

- \rightarrow cis-1,2-Dichloroethylene
- Tetrachloroethylene
- ----Trichloroethylene
- —Vinyl chloride

Units: μg/kg

VI Tier 3						
	Soil					
	Facility Response Action			se Action		
Benzene	1.7	200	1.7	12,000		
1,1-Dichloroethane	2.6	460	2.6	28,000		
1,1-Dichloroethylene	12	1,600	12	61,000		
cis-1,2-Dichloroethylene	2.1	350	2.1	14,000		
trans-1,2-Dichloroethylene	39	5,600	39	430,000		
Tetrachloroethylene	6.2	770	6.2	20,000		
Trichloroethylene	0.33	47	0.33	1,200		
Vinyl chloride	0.082	10	0.082	2,200		

Facility-specific vs Site-specific

VI Tier 3B - Site-Specific

VI Tier 1 Generic Screening Levels

VI Tier 2 Unrestricted Residential Criteria

> VI Tier 3A Generic Criteria

VI Tier 3B Site-specific Criteria

- Optional NOT a requirement
- Want to capture or consider:
 - Multiple soil types present
 - Different soil parameters
 - Greater air exchange
 - Alternate approach
 - Evaluating petroleum
 - Evaluating NAPL
 - New method or model
- **Requires DEQ approval**

Remediation and Redevelopment Division

www.michigan.gov/deqrrd

- Leaders in Environmental Stewardship
- Partners in Economic Development
- Providers of Excellent Customer Service