If sheets | Scientists | Constructors

Jeff S. Fusee,
CIH, CSP
Senior Industrial Hygienist

Ted Perron,
PE, CEM, LEED AP
Senior Mechanical Engineer

DIVERSITY IN SERVICES

AIR QUALITY ENGINEERS · ARCHITECTS · CHEMICAL ENGINEERS AND CHEMISTS · CIVIL ENGINEERS · CIVIL FIELD ENGINEERS AND INSPECTORS · CONSTRUCTION MANAGERS AND SUPERINTENDENTS · ENVIRONMENTAL ENGINEERS · GEOLOGISTS · GIS ANALYSTS · HYDROGEOLOGISTS · INDUSTRIAL HYGIENISTS · INTERIOR DESIGNERS MECHANICAL, ELECTRICAL, AND STRUCTURAL ENGINEERS · OCCUPATIONAL SAFETY AND HEALTH MANAGERS PROJECT MANAGERS · SURVEYORS · TRANSPORTATION ENGINEERS · WATER AND WASTEWATER ENGINEERS

- Ventilation
- Filtration
- Disinfection
- Humidity control
- Bipolar ionization

Ventilation

- Outdoor air dilutes contaminents
- Can be energy intensive
- Needs to be coordinated with exhaust and pressurization strategies to isolate/contain
- Not feasible with some HVAC system types

Kowalski and Bahnfleth, Pennsylvania State University (2002)

Filtration

- ASHRAE 52.2 defines Minimum
 Efficiency Reporting Value (MERV)
- Particle fraction removed is efficiency
- Higher MERV values = higher efficiency
- Requires air recirculation
- Most existing systems use MERV 8 filters based on minimum standards
- MERV 13 and higher ≥ 90%
 efficiency at droplet nuclei size

Filtration

- Based on hypothetical office model
- MERV 13 and 14 filters provide low risk at least cost
- HEPA filters provide 4% lower relative risk at double the cost

Fine fiber filter Slartibrer Age V Spot Magn Bet WD 10.0 kV 3.0 400x SE 31.3 Camfil AB

ENGINEERING CONTROLS

- Typically 12 inches thick
- Fine fibers
- Captures particles through diffusion and interception
- Consistent efficiency throughout filter life

- Typically 2 or 4 inches thick
- Coarse fibers
- Requires charge to attract and hold particles
- As fibers become insulated by contaminants, charge is lost
- Filter efficiency is reduced

Filtration

MERV 13 Filter

Not all filters are created equal

Disinfection

Germicidal UV Light

- Disrupts virus chemical bonds
- Makes virus unviable and unable to replicate
- Used in food, air, and water purification applications inactivating bacteria, viruses, and fungi. Coronavirus susceptibility is good.
- Two treatment types used in HVAC air handlers:
- Surface: stationary biofilm on cooling coils and drain pans
- Airborne: particles in airstream
- Well-vetted by CDC

Humidity Control

- Most respiratory viruses survive longer at lower RH
- Coronavirus' fatty envelope falls apart in warmer, more humid conditions
- Studies indicate viral infection is reduced between 40 and 60% RH
- Droplets evaporate slower and settle out faster
- Our mucous membranes are less receptive
- Virus is less infective

What to do?

- What is the best approach for control system testing?
- Can my fans handle the increased static pressure of new filters?
- Will IAQ testing be right for me?
- Can I increase filtration instead of increasing ventilation?
- Is my building envelope suited for increased humidification?
- How will humidity affect UVGI?
- How much ventilation can my cooling coils and central plant handle?
- Is MERV-13 a sufficient filtration level?
- Should I consider bipolar ionization?
- Do my air systems meet ASHRAE 62.1 and should I increase ventilation further?
- What will be the impact on my energy and operational costs?

PRACTICAL MECHANICAL STRATEGIES Good: Control System Review

Control Settings

- Temperature and humidity
- Energy recovery functioning
- Exhaust fans

3:00 AM

6:00 AM

9:00 AM

12:00 PM

3:00 PM

9:00 PM

Schedules

- Ventilation schedules
- Separate from AC
- Trend review
- Minimum OA flow and dampers

SUN	MON	TUE	WED	THU	FRI	SAT
ocOccupied						ocOccupied
	ocOccupied 6:30 AM - 6:00 PM	ocOccupied 6:30 AM - 6:00 PM	ocOccupied 6:30 AM - 6:00 PM	ocOccupied 6:30 AM - 6:00 PM	ocOccupied 6:30 AM - 6:00 PM	
		 				
ocOccupied						ocOccupied
ocOccupied			-			ocOccupied
		į				
ocOccupied						ocOccupied
	ocOccupied	ocOccupied	ocOccupied	ocOccupied	ocOccupied	

PRACTICAL MECHANICAL STRATEGIES Better: Controls + Physical Inspections

- Outside air intakes
- Condition
- Location
- Dampers and control devices working
- Filters
- Installed properly (e.g. bag orientation)
- Seals, clips no air bypass (light test)
- Clean filters?

ASHRAE Research

½" filter gaps result in:

- 20% air bypass
- MERV 15 reduces to MERV 8

ASHRAE Inspection Checklist

- Epidemic conditions in place
- Maintenance checks

Practical Mechanical Strategies

Best: Controls + Physical Inspections + ASHRAE 62.1 Verification

- Outdoor air: original design vs. current required vs. actual
- Calculations and measurements
- Ways to simplify:
- Square-foot basis
- Engineering judgment

Practical Mechanical Strategies

Best: Controls + Physical Inspections + ASHRAE 62.1

- Enhanced indoor air quality: revised sequences
- Flush-out
- "Emergency Mode"

Verification

- Demand limiting
- Demand control ventilation?
- 30% increase in outdoor air
- Increased economizer range, extended ventilation hours

"ZONE NAME AND NUMBER"	"OCCUPANCY CATEGORY"	"ZONE FLOOR AREA" AZ (SQ FT)	ARE YOU USING DEFAULT VALUE FOR ZONE POPULATION?	"ZONE POPULATION" PZ (PEOPLE)	ZONE AIR DISTRIBUTION EFFECTIVENESS EZ	"ZONE OUTDOOR AIRFLOW" VOZ (CFM)	"ZONE DISCHARGE AIRFLOW" VDZ (CFM)	"ZONE PRIMARY AIRFLOW" VPZ (CFM)	ZONE SECONDARY RECIRCULATION FRACTION ER	ZONE PRIMARY AIR FRACTION Ep
JOE'S OFFICE	OFFICE SPACE	100	YES	0.50	1.00	8.50	80	20	1.00	0.25
OPEN OFFICES	OFFICE SPACE	1,200	YES	6.00	1.00	102.00	1,500	450	1.00	0.30
CONFERENCE ROOM	CONFERENCE / MEETING	325	YES	16.25	1.00	100.75	550	180	1.00	0.33
LUNCH	CAFETERIA / FAST FOOD DINING	450	NO	15.00	1.00	193.50	400	110	1.00	0.28
CORRIDOR	CORRIDORS	500	YES	0.00	1.00	30.00	300	30	1.00	0.10
LOBBY	LOBBIES	400	NO	6.00	0.80	67.50	710	100	1.00	0.14

SYSTEM NAME AND NUMBER	AHU-1
CONDITION ANALYZED (IMPACTS EZ, VDZ, VPZ AND VPS)	COOLING
ALL ZONES ARE INCLUDED IN THE VRP CALCULATION	YES

"SYSTEM NAME AND NUMBER"	"SYSTEM TYPE"	"ALL ZONES INCLUDED IN THE VRP CALCULATION?"	"CONDITION ANALYZED"	"SYSTEM FLOOR AREA" AS (SQ FT)	SYSTEM POPULATION PS (PEOPLE)	"OUTDOOR AIR INTAKE FLOW (REQUIRED BY 62.1)" VOT (CFM)	"OUTDOOR AIR INTAKE FLOW PROVIDED (MEASURED OR DESIGN)" (CFM)	"OUTDOOR AIR INTAKE FLOW PROVIDED MEETS OR EXCEEDS VOT?"	ZONE OUTDOOR AIRFLOW PROVIDED MEETS OR EXCEEDS VOZ FOR ALL ZONES?
				MULTIPLE ZO	ONE SYSTEMS				
AHU-1	MULTIPLE ZONE	YES	COOLING	2.975	35.00	515	520	YES	N/A

100% OUTDOOR AIR SYSTEMS

TOTALS #NAME? #NAME? #NAME? #NAME?

Wastewater Surveillance

NOT A NEW CONCEPT

• Used to monitor for polio vaccine efficiency

USED AS A LEADING INDICATOR

- Designed to have results early in time for meaningful actions
- Current unknown

COMPLIMENT EXISTING PROTOCOLS

Not a replacement for current precautions being taken

Wastewater Surveillance

MICHIGAN EGLE \$10 MILLION PILOT PROJECT

Several other states have developed programs as well

NATIONAL WASTEWATER SURVEILLANCE SYSTEM (NWSS)

CDC and HHS collaboration

Developing a Plan

WHAT IS YOUR GOAL?

What will you do with the data?

WHAT IS YOUR TARGET?

- Facility?
 - By Shift?
- Campus?
 - Daily?
 - Zones?
- Community?

DETERMINE TARGET BASED ON GOALS

Developing a Plan

LIMITING FACTORS

- Time
- Laboratory capacities
- Cost
- Access to sampling points
- Ability to follow-up

Sampling

DIFFERENT METHODS

- Composite Sampling
 - Continuous vs. Flow Weighted
- Grab Samples

SAMPLES MUST BE KEPT COLD

HAVE ANALYZED AS SOON AS POSSIBLE

SHIP ACCORDING TO DOT AND IATA

Analysis

SEVERAL METHODS OF ANALYSIS AVAILABLE

TURN-AROUND TIME IS CRUCIAL

DETECTING THE AMOUNT OF SARS-COV-2 RNA IN THE SAMPLE

- Versions of polymerase chain reaction (PCR)
- Cycle Threshold
 - # of cycles needed to detect the presence of the RNA
 - Non-Detect or Detect = Not Quantitative

Results

INFECTED INDIVIDUALS CONTRIBUTING TO THE WASTEWATER SYSTEM

• Symptomatic and asymptomatic individuals

LOOKING FOR A TREND

Gathering data to analyze over time

ARE THEY NORMALIZED?

- PCR results compared to known markers
 - Viral and bacterial markers

Follow-up

NOW THAT YOU HAVE THE DATA, WHAT DO YOU DO WITH IT?

- Share with affected population?
- Increase in current protocols?
 - Implement new protocols?
- Increase in messaging?
- Conduct individual testing?

Conclusions

DETERMINING YOUR GOALS UPFRONT ARE KEY

Determining limitations

GET RESULTS AS QUICKLY AS POSSIBLE TO BE ABLE TO MAKE DECISIONS

DOES THIS MAKE SENSE FOR YOU?

If sheets | Scientists | Constructors